Query learning for maximum information gain in amulti - layer neural
نویسنده
چکیده
In supervised learning, the redundancy contained in random examples can be avoided by learning from queries, where training examples are chosen to be maximally informative. Using the tools of statistical mechanics, we analyse query learning in a simple multi-layer network, namely, a large tree-committee machine. The generalization error is found to decrease exponentially with the number of training examples, providing a signiicant improvement over the slow algebraic decay for random examples. Implications for the connection between information gain and generalization error in multi-layer networks are discussed, and a compu-tationally cheap algorithm for constructing approximate maximum information gain queries is suggested and analysed.
منابع مشابه
Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملPrediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks
The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...
متن کاملLearning from queries for maximuminformation gain in imperfectly learnableproblemsPeter
In supervised learning, learning from queries rather than from random examples can improve generalization performance significantly. We study the performance of query learning for problems where the student cannot learn the teacher perfectly, which occur frequently in practice. As a prototypical scenario of this kind, we consider a linear perceptron student learning a binary perceptron teacher....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997